a2 United States Patent

Lee et al.

US009483259B1

US 9,483,259 B1
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(60)

(1)

(52)

SYSTEM AND METHOD FOR PROVIDING
REAL-TIME EXECUTION OF SOURCE
CODE IN A COLLABORATIVE ONLINE
SOFTWARE DEVELOPMENT
ENVIRONMENT

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Jacob E. Lee, Brooklyn, NY (US);
Azmat Ali Pasha, Chicago, IL (US);
Jon Eric Trowbridge, Paris (FR);
Benjamin M. Collins-Sussman,
Chicago, 1L (US)

Assignee: Google Inc., Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.
Appl. No.: 13/827,381

Filed: Mar. 14, 2013

Related U.S. Application Data

Provisional application No. 61/643,528, filed on May
7,2012, provisional application No. 61/643,645, filed
on May 7, 2012, provisional application No.
61/643,563, filed on May 7, 2012.

Int. CL.
GO6F 9/44
U.S. CL
CPC .. GOGF 8/71 (2013.01); GO6F 8/30 (2013.01)

(2006.01)

1205~

(58) Field of Classification Search

CPC GOG6F 8/71; GOGF 8/30; GOGF 8/20;
GO6F 8/10
USPC .o 717/101, 102, 103, 110

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,000,220 B1* 2/2006 Booth 717/110
8,656,343 B2* 2/2014 Fox et al. .. 717/101
2012/0284684 Al* 11/2012 Michaely et al. 717/103
2013/0282798 Al* 10/2013 McCarthy et al. 709/203

OTHER PUBLICATIONS

Jim Whitehead, Collaboration in Software Engineering: A Road
Map, Future of Software Engineering, 2007.*

* cited by examiner

Primary Examiner — Anna Deng
(74) Attorney, Agent, or Firm — Lerner, David,
Littenberg, Krumholz & Mentlik, LLP

(57) ABSTRACT

Access 1o a source code file stored at a server is provided to
a plurality of user devices, via a network. The source code
file may comprise software code. The source code file stored
at the server is updated based on a plurality of changes
received from respective user devices, substantially in real-
time. A selection of an option to execute the source code file
is received from one of the plurality of user devices. In
response to the selection, the source code file is executed,
substantially in real-time.

19 Claims, 13 Drawing Sheets

Providing to a Plurality of User Devices Access to a
Source Code File Stored at a Server, via a Network

1210~

y

Update Source Code File Based on a Plurality of
Changes Received from Respective
User Devices, Substantially in Real-Time

1220~

y

Receive a Selection of an Option to
Execute the Source Code File

1230~

Y

Execute the Source Code File Substantially in
Real-Time, in Response to the Selection

U.S. Patent

Nov. 1, 2016

Sheet 1 of 13

US 9,483,259 B1

130~ 160-A~
Collaborative
Development User Device
Service
105
155~ 160-B~,
Cloud-Based
Hosting User Device
Platform
159\
Versioned
Code Storage
FIG. 1
160~
User Device
210\ 270\
Browser Display
333~
Operational
Transformation
Rules
282~
Viewport

FIG. 2

U.S. Patent

Nov. 1, 2016

Sheet 2 of 13

US 9,483,259 B1

130~
375 Collaborative Development Service
S
Processor
325\
Memory
400
N 1171~
Source Code |_Branch-1_| 1050
File 1172~ 2
333 | Branch-2 | Comment
2 : Thread
Operational
Transformation
Rules
FIG. 3
400~
Source Code File
404 {
406

FIG. 4

US 9,483,259 B1

Sheet 3 of 13

Nov. 1, 2016

U.S. Patent

g5 'Old

€-065

L +d cd Z2d

G-065—"| gd Gd~

/

/[

\-g-z8¢

& abed
ya
7
GGS
Aeidsiq

\g-0./2
921A9(] J19S

—1-06G

—1-06G

\-g-09.

VS "Old

2d i~

/

£-085-" €d L4
Hodmalp

/[

\-y-282

Z obed
v
7
vvS
Ae|dsi

\v-0.2
991A9(J9S()

—¢-089

—1-08G

\-v-00l

U.S. Patent Nov. 1, 2016 Sheet 4 of 13 US 9,483,259 B1

610~

Provide, to a Plurality of User Devices, via a Network,
Access to a Source Code File Stored at a Server

620~ y

Receive, from the Plurality of User Devices, Respective
Changes to the Source Code File

630\ v

Apply One or More Operational Transformation Rules
to the Respective Changes, Generating a Plurality
of Modifications Applicable to the Source Code File

640~ v

Determine a Plurality of Modifications Applicable to
Respective Portions of the Source Code File Stored
in Respective User Devices, the Respective Portions

Being Less Than the Source Code File

650'\ L 4

Transmit Each Modification Only to One or More User
Devices that Store a Portion of the Source Code File
Corresponding to the Respective Modification

FIG. 6

U.S. Patent Nov. 1, 2016 Sheet 5 of 13 US 9,483,259 B1

File
722\
Synchronize
400/
FIG.7
885-\
File
Revision History | —
867~
\-860
1R
400—/

FIG. 8

U.S. Patent Nov. 1, 2016 Sheet 6 of 13 US 9,483,259 B1

988\‘
File
= Revision History =
MM/DD/YYYY 12:01:01 }451
Dev 1 Activity 1
MM/DD/YYYY 12:03:05 }452
Dev 2 Activity 2
A
> 916
400-/
FIG.9
1075\‘
File
11031
Dev 1 |
o L1050
L 1035
Dev2 ||/
| TAdd] 1061
400-/

FIG. 10

U.S. Patent

Nov. 1, 2016

Sheet 7 of 13

155~
Cloud-Based Hosting Platform
1108~ 1130~
Interpreter
Controller Service
1142~ 1110~
Conflict Compiler
Check Service Service
1144~ 1146~
Coc?emgéy3|s Test Service
1148~
Merging
Service
159~
Versioned Code Storage
400~ 428~
Source .
Code A‘I%Itgllgy
File
171~
Branch-1
1172~
Branch-2

US 9,483,259 B1

FIG. 11A

FIG. 11B

U.S. Patent Nov. 1, 2016 Sheet 8 of 13 US 9,483,259 B1

428\‘
434 436 438
A A A
- N N)
Activity Developer Activity
Identifier Name Information
MM/DD/YYYY o
451 Developer 1| Activity 1
12:01:01
MM/DD/YYYY -
452 Developer 2 | Activity 2
12:03:05

FIG. 11C

U.S. Patent Nov. 1, 2016 Sheet 9 of 13 US 9,483,259 B1

1205~

Providing to a Plurality of User Devices Access to a
Source Code File Stored at a Server, via a Network

1210~ \

Update Source Code File Based on a Plurality of
Changes Received from Respective
User Devices, Substantially in Real-Time

1220~ \

Receive a Selection of an Option to
Execute the Source Code File

1230~ v

Execute the Source Code File Substantially in
Real-Time, in Response to the Selection

FIG. 12

U.S. Patent

Nov. 1, 2016

Sheet 10 of 13

US 9,483,259 B1

File
| >
400"
Execute |~ 1350
1361 —
FIG. 13
1405\‘
File
) 142
Source Code File I 14%°
Executed
Results: —
OK
>
400"

FIG. 14

U.S. Patent Nov. 1, 2016 Sheet 11 of 13 US 9,483,259 B1

1535~
File
)) 1537
Submit For Review ™
I» —
400" 1580
FIG. 15
1605~
File
1650
| createBranch "
|| -
400-" 1661

FIG. 16A

U.S. Patent Nov. 1, 2016 Sheet 12 of 13 US 9,483,259 B1

1673~
File
1
Merge Branch |~ 0%
| 1683 |
1171~ L
FIG. 16B
File
1692
7 1693
Reconcile with |~
| . Which Branch?
1171~ ¢ Branch-2\
. Branch-X\lggg -

FIG. 16C

U.S. Patent Nov. 1, 2016 Sheet 13 of 13 US 9,483,259 B1

1611~

Provide to a Device Access to a Source Code File Stored
at a Server, the Access Being Provided via an Internet

1613~ v

In Response to a Request from the Device, Generate a
Branch Based on the Source Code File

1615~ Y

Update the Branch Based on a Change Received from the
Device, Generating an Updated Branch

1617~ \

Detect a Conflict Between the Updated Branch and the
Source Code File

1619~

Y
Notify a User of the Device of the Conflict

FIG. 16D
1700~
Computer
1701~ 1703~
Processor Memory

1702~

Storage 1705~
1704~ Input/Output

Network

Interface

FIG. 17

US 9,483,259 Bl

1
SYSTEM AND METHOD FOR PROVIDING
REAL-TIME EXECUTION OF SOURCE
CODE IN A COLLABORATIVE ONLINE
SOFTWARE DEVELOPMENT
ENVIRONMENT

This application claims the benefit of U.S. Provisional
Patent Application No. 61/643,528, filed on May 7, 2012,
U.S. Provisional Patent Application No. 61/643,645, filed on
May 7, 2012, and U.S. Provisional Patent Application No.
61/643,563, filed on May 7, 2012, each of which is incor-
porated by reference herein in its entirety.

TECHNICAL FIELD

This specification relates generally to systems and meth-
ods for providing software development processing services,
and more particularly to systems and methods for facilitating
collaborative online software development.

BACKGROUND

Existing online software development services allow a
developer to create and edit a source code file via the
Internet, and store the source code at a remote location.
Typically, a developer may access an online software devel-
opment service using a web browser operating on a com-
puter or other device. By storing the source code at the
remote location, a developer can access the source code
from any location, using a computer or other device that has
access to the Internet. While existing software development
services enable a single developer to access and edit a source
code file remotely, these services offer limited collaboration
capabilities.

SUMMARY

In accordance with an embodiment, a method for provid-
ing software development services is provided. Access to a
source code file stored at a server is provided to a plurality
of user devices, via a network. Respective changes to the
source code file are received from the plurality of user
devices. One or more operational transformation rules are
applied to the respective changes, generating a plurality of
modifications applicable to the source code file. A subset of
modifications applicable to respective portions of the source
code file stored in respective user devices, the respective
portions being less than the source code file, are determined.
Each of the transformed changes is transmitted only to one
or more user devices that store a portion of the source code
file corresponding to the respective modification.

In accordance with an embodiment, a first change to the
source code file is received from a first user device, and a
second change to the source code file is received from a
second user device.

In accordance with an embodiment, a determination is
made that a first user device stores a first predetermined
number of pages of the source code file, and first selected
pages equal in number to the first predetermined number of
pages are transmitted to the first user device. A determina-
tion is made that a second user device stores a second
predetermined number of pages of the source code file, and
second selected pages equal in number to the second pre-
determined number of pages are transmitted to the second
user device.

In accordance with another embodiment, a first modifi-
cation is determined from among the plurality of modifica-

10

15

20

25

30

35

40

45

50

55

60

65

2

tions that is relevant to the first selected pages, and the first
modification is transmitted to the first user device. A second
modification is determined from among the plurality of
modifications that is relevant to the second selected pages,
and the second modification is transmitted to the second user
device.

In another embodiment, the first one of the respective
changes applies to one of the first selected pages. The one of
the respective changes may apply to a location in the source
code file located before the first selected pages, and cause a
resulting modification applicable to the one of the first
selected pages.

In another embodiment, the first user device stores a first
predetermined number of pages determined based on a
predetermined number of lines of source code.

In accordance with another embodiment, a method of
providing software development services is provided.
Access 1o a source code file stored at a server is provided to
a plurality of user devices, via a network. The source code
file stored at the server is updated based on a plurality of
changes received from respective user devices, substantially
in real-time. A selection of an option to execute the source
code file is received from one of the plurality of user devices.
In response to the selection, the source code file is executed,
substantially in real-time.

In one embodiment, the source code file comprises a
plurality of files. The source code file may comprise soft-
ware code. A plurality of users employing the plurality of
user devices are allowed to collaboratively edit the software
code.

In another embodiment, substantially simultaneous access
to a source code file stored at a server is provided to a
plurality of user devices, via a network. A request to perform
a service with respect to the source code file is received from
one of the plurality of user devices, and in response to the
request, the service is performed with respect to the source
code file, substantially in real-time. The service may com-
prise one of a compiler service and a code analysis service.

In another embodiment, the source code file is modified
based on a change received from a first user device, gener-
ating a modified source code file. A second request that a
particular user review the modified source code file is
received from the first user device. In response to the second
request, a review request is transmitted to the particular user.
A second selection of the option to execute the modified
source code file is received from the particular user, and in
response to the second selection, the modified source code
file is executed substantially in real-time.

In another embodiment, a request to generate a branch of
the source code file is received from a first user device. In
response to the request, a branch of the source code file is
generated. The branch is modified based on a change
received from the first user device. A second request that a
particular user review the branch is received from the first
user device. In response to the second request, a review
request is transmitted to the particular user. A second selec-
tion of a second option to execute the branch is received
from the particular user, and in response to the second
selection, the branch is executed, substantially in real-time.

In another embodiment, updating the source code file
comprises identifying a plurality of updates to the source
code file. A local portion of the source code file stored by a
user device is determined, the portion being less than all of
the source code file. For each update within the plurality of
updates, the respective update is transmitted to the user
device only if the respective update corresponds to the local
portion of the source code file.

US 9,483,259 Bl

3

In accordance with another embodiment, access to a
source code file stored at a server is provided to a device, the
access being provided via an Internet. In response to a
request from the device, a branch is generated based on the
source code file. The branch is updated based on a change
received from the device, generating an updated branch. A
conflict is detected between the updated branch and the
source code file, and a user is notified of the device of the
conflict.

In one embodiment, the source code file comprises a first
plurality of files, and the branch comprises a second plurality
of files.

In another embodiment, in response to a selection of a
merge option, the updated branch and the source code file
are merged.

In another embodiment, the branch is updated based on
the change received from the device, substantially in real-
time. A selection of an option to execute the updated branch
is received from the device, and, in response to the selection,
the updated branch is executed, substantially in real-time.

In another embodiment, a background routine monitors
the source code file and the branch to identify conflicts
between the source code file and the branch. It may be
detected that a second device has accessed the source code
file and that the source code file has been modified based on
a second change received from the second device, generat-
ing a modified source code file. It may be further detected
that a second conflict exists between the updated branch and
the modified source code file. In response, the user is notified
of the second conflict.

In other embodiments systems, apparatus, and devices for
performing the methods described above are provided. In
other embodiments, computer readable media storing com-
puter program instructions, which, when executed by a
processor, cause the processor to perform operations
described herein, are provided.

These and other advantages of the present disclosure will
be apparent to those of ordinary skill in the art by reference
to the following Detailed Description and the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a communication system that may be used
to provide collaborative development services in accordance
with an embodiment;

FIG. 2 shows functional components of an exemplary
user device in accordance with an embodiment;

FIG. 3 shows functional components of a collaborative
development service in accordance with an embodiment;

FIG. 4 shows a source code file in accordance with an
embodiment;

FIG. 5A shows a display and a viewport of a user device
in accordance with an embodiment;

FIG. 5B shows a display and a viewport of a user device
in accordance with an embodiment;

FIG. 6 is a flowchart of a method of providing collabora-
tive development services in accordance with an embodi-
ment;

FIG. 7 shows a web page displaying a source code file and
a menu with a synchronize option in accordance with an
embodiment;

FIG. 8 shows a web page displaying a source code file and
a menu with a revision history option in accordance with an
embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 9 shows a web page displaying a source code file and
a revision history of the source code file in accordance with
an embodiment;

FIG. 10 shows a web page displaying a source code file
and a comment thread associated with the source code file in
accordance with an embodiment;

FIG. 11A shows components of an cloud-based hosting
platform in accordance with an embodiment;

FIG. 11B shows components of a versioned code storage
in accordance with an embodiment;

FIG. 11C shows an activity table in accordance with an
embodiment;

FIG. 12 is a flowchart of a method of providing collab-
orative software development services in accordance with an
embodiment;

FIG. 13 shows a web page displaying a source code file
and a menu with an execute option in accordance with an
embodiment;

FIG. 14 shows a web page displaying a source code file
and a results box in accordance with an embodiment;

FIG. 15 shows a web page displaying a source code file
and a menu with a submit for review option in accordance
with an embodiment;

FIG. 16A shows a web page displaying a source code file
and a menu with a create branch option in accordance with
an embodiment;

FIG. 16B shows a web page displaying a source code file
and a menu with a merge branch option in accordance with
an embodiment;

FIG. 16C shows a web page displaying a source code file
and a menu with a reconcile option in accordance with an
embodiment;

FIG. 16D is a flowchart of a method of providing collab-
orative software development services in accordance with an
embodiment; and

FIG. 17 shows components of a computer that may be
used to implement the invention.

DETAILED DESCRIPTION

FIG. 1 shows a communication system 100 that may be
used to provide collaborative software development services
in accordance with an embodiment. Communication system
100 includes a network 105, a collaborative development
service 130, a cloud-based hosting platform 155, a versioned
code storage 159, and a plurality of user devices 160-A,
160-B, etc. For convenience, the term “user device 160" is
used herein to refer to any one of user devices 160-A, 160-B,
etc. Accordingly, any discussion herein referring to “user
device 160” is equally applicable to each of user devices
160-A, 160-B, etc. Communication system 100 may include
more or fewer than two user devices.

In the exemplary embodiment of FIG. 1, network 105 is
the Internet. In other embodiments, network 105 may
include one or more of a number of different types of
networks, such as, for example, an intranet, a local area
network (LAN), a wide area network (WAN), a wireless
network, a Fibre Channel-based storage area network
(SAN), or Ethernet. Other networks may be used. Alterna-
tively, network 105 may include a combination of different
types of networks.

Collaborative development service 130 provides a plat-
form and software development services to software devel-
opers, enabling developers to create, display, edit, operate,
and deploy a variety of software applications. For example,
one or more developers may access collaborative develop-
ment service 130 via network 105, create a source code file

US 9,483,259 Bl

5

containing software code, and collaboratively edit the code.
Multiple developers may access the source code file simul-
taneously, and each may separately make his or her own
edits to the code, for example.

While the systems and methods described herein are
discussed with reference to a single source code file, it is to
be understood that the use of the systems and methods
described herein is not limited to a single source code file.
In other embodiments, systems and methods described
herein may be used by software developers while collabo-
rating to create and edit multiple source code files. The
discussion herein also describes the creation of a “branch”
based on a source code file. A branch that includes a single
file may be created based on a single source code file.
Alternatively, a branch that includes multiple files may be
created based on a plurality of source code files. Systems
and methods described herein may be used with respect to
one or more branches derived from one or more source code
files.

In one embodiment, collaborative development service
130 may be accessible via a World Wide Web page that may
be viewed using a conventional Web browser, for example.
In another embodiment, collaborative development service
130 may be accessed via an installed application residing on
a user device. A developer may be required to log into a
respective account to access a source code file or other
document. Collaborative development service 130 may
grant to a developer access rights with respect to a source
code file or document, such as viewing and/or editing rights.

In other embodiments, a client application may be
installed on a user device to handle periods of network
unavailability, to enable a user to continue editing while
offline. Such functionality may alternatively be incorporated
into the browser of a user device.

User device 160 may be any device that enables a
developer to communicate via network 105. User device 160
may be connected to network 105 through a direct (wired)
link, or wirelessly. User device 160 may have a display
screen (not shown) for displaying information. For example,
user device 160 may be a personal computer, a laptop
computer, a workstation, a mainframe computer, etc. Alter-
natively, user device 160 may be a mobile communication
device such as a wireless phone, a personal digital assistant,
a tablet device, etc. Other devices may be used.

FIG. 2 shows functional components of an exemplary
user device 160 in accordance with an embodiment. User
device 160 includes a web browser 210 and a display 270.
Web browser 210 may be a conventional web browser used
to access World Wide Web sites via the Internet, for
example. Display 270 displays source code files, documents,
images, Web pages, and other information. For example, all
or a portion of a source code file or other document that a
developer creates or edits may be displayed on display 270.

User device 160 also includes a viewport 282, which
holds a portion of a source code file. In some embodiments,
viewport 282 has a predetermined size and therefore may
store a quantity of data equal to or less than the predeter-
mined size. The size of a user device’s viewport may depend
on the device type. For example, a laptop computer may
have a viewport that holds the equivalent of five pages of
text data, a workstation may have a viewport that holds up
to ten pages of text data, a cell phone may have a viewport
that holds the equivalent of seven display screens of text
data, etc.

A set of operational transformation rules 333 is stored in
user device 160. Operational transformation rules 333 are
discussed in more detail below.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 3 shows functional components of collaborative
development service 130 in accordance with an embodi-
ment. Collaborative development service 130 includes a
processor 375 and a memory 325. Collaborative develop-
ment service 130 may include other components not shown
in FIG. 3. Operational transformation rules 333 are stored in
memory 325 (of collaborative development service 130) as
well as in user device 160.

In accordance with an embodiment, a software developer
employing user device 160 or other processing device may
access collaborative development service 130 via network
105 and create a source code file containing software code.
For example, a developer may access collaborative devel-
opment service 130, write one or more lines of software
code, and store the code in a source code file, such as source
code file 400 shown in FIG. 4. Source code file 400 includes
lines of code 404 and 406, for example. Source code file 400
may include any number of pages of code. In accordance
with an embodiment, multiple software developers may
access source code file 400 and edit the document simulta-
neously.

It is to be understood that while FIG. 4 depicts a single
source code file 400, in another embodiment, source code
file 400 may represent a plurality of source code files,
including one or more branches of these files. In some
embodiments source code file 400 may comprise hundreds
or thousands of different source code files related to a
project, product, etc.

Operational Transformations

In accordance with an embodiment, collaborative devel-
opment service 130 may receive, substantially simultane-
ously, from a plurality of user devices, multiple instructions
specifying respective changes to a source code file. In
response, collaborative development service 130 uses opera-
tional transformation rules 333 to determine a transformed
instruction, or set of transformed instructions, to cause the
user devices to display the changed software code accurately
and consistently, and transmits the transformed
instruction(s) to the respective user devices.

Referring again to FIG. 3, operational transformation
rules 333 include rules governing the modification of data in
a source code file, and the display of a source code file on
multiple user devices, when multiple changes are made to
the source code file. In one embodiment, operational trans-
formation rules 333 resolve conflicting changes specified in
a plurality of instructions received from a plurality of user
devices. When a plurality of instructions received from a
plurality of user devices specify conflicting changes to a
source code file that may create inconsistent representations
of'the source code file across the respective user devices, one
or more operational transformations are applied to generate
one or more transformed operations operable to reflect the
specified changes in a consistent manner in the representa-
tions displayed on the respective devices. In particular, the
rules apply a logic that contextualizes the changes specified
by multiple instructions to determine a resolution that will
result in a consistent representation of a source code file
across multiple devices and within collaborative develop-
ment service 130, without creating a collision (such as a
temporal paradox or a race condition). In one embodiment,
operational transformations are applied to instructions
received from user devices in real-time or substantially in
real-time, to enable the respective user devices to update the
respective representations of the source code file in real-time
or substantially in real-time. A transformed operation may,
or may not, include a modification to the source code file.

US 9,483,259 Bl

7

Referring to FIG. 3, processor 375 examines instructions
received from respective user devices 160 and selectively
applies operational transformation rules 333 to determine
transformed operations. In an embodiment, processor 375,
in accordance with operational transformation rules 333,
examines a first instruction P specifying a first change to a
source code file, and a second instruction Q specifying a
second change to the source code file, and determines a set
of transformed operations (P',Q") in accordance with the
following transformation rule:

T(PO)—=P' Q such that P*Q'==0*P’ (Rule 1)

In accordance with Transformation Rule 1, a first trans-
formed operation and a second transformed operation are
determined such that application of the first transformed
operation to the source code file followed by application of
a second transformed operation produces a result that is the
same as the result of application of the second transformed
operation followed by application of the first transformed
operation. The application of Transformation Rule 1 is
further described in the illustrative embodiments discussed
below.

Suppose, for purposes of illustration, that a first developer
employing user device 160-A, uses collaborative develop-
ment service 130 to access source code file 400. A second
developer employing user device 160-B, simultaneously
accesses source code file 400 in the same manner. Suppose
that a first instruction is received from a first device to insert
text of length X at the beginning of a word of length Y, and
a second instruction is received from a second device to
insert text at the end of the word (after the Yth alphanumeric
character), before any request has been transmitted to update
the visual representation of the word based on the first
instruction. Processor 375, using operational transformation
rules 333, transforms the two changes to a pair of trans-
formed operations: a first transformed operation to insert the
first text at the beginning of the word, and a second
transformed operation to insert the second text after the
(X+Y)th alphanumeric character of the word. Requests to
perform the transformed operations are transmitted to both
devices.

In another example, a first developer, employing user
device 160-A may add a new line to the first page of a source
code file, causing all subsequent text to be pushed down. A
second developer, employing user device 160-B, may simul-
taneously make a change to a line on the tenth page of the
source code file. Processor 375 determines that in this
instance, application of the first change to the source code
file followed by application of the second change produces
a result that is different from application of the second
change followed by application of the first change (because
the text on the tenth page is pushed down by the first
developer’s change). Accordingly, processor 375 uses
operational transformation rules 333 to transform the two
changes to a pair of transformed operations in accordance
with Transformation Rule 1, and transmits one or more of
the transformed operations to each of the two user devices.

In accordance with an embodiment, each user device 160
does not store all of source code file 400 but instead stores
only a portion of source code file 400. In particular, each
user device 160 stores a portion of source code file 400
corresponding to the size of its viewport 282.

In an illustrative embodiment shown in FIGS. 5A-5B,
each user device 160 stores a portion of source code file 400
equivalent to N pages of source code file 400, where N is an
integer determined based on the size of the user device’s
viewport. In this example, viewport 282-A of user device

10

20

35

40

45

55

8

160-A may store data equivalent to three pages 580-1,
580-2, 580-3 of source code file 400, while viewport 282-B
of'user device 160-B may store data equivalent to five pages
590-1, 590-2, 590-3, 590-4, 590-5 of source code file 400.
In other embodiments, a viewport may have a different size.

In other embodiments, the size of a viewport in a user
device may be based another measure, such as a predeter-
mined number of lines of source code. Other measures may
be used.

Accordingly, collaborative development service 130 may
monitor the activities of the developer employing user
device 160-A and from time to time transmit to user device
160-A a portion of source code file 400 having a size suitable
to the device’s viewport and determined based on the
location within the source code file that the developer is
currently viewing. The portion of the source code file
transmitted to a particular user device is determined based
on the size of the viewport of particular user device. For
example, because viewport 282-A of user device 160-A has
a size equivalent to three pages of source code file 400,
collaborative development service 130 may from time to
time transmit to user device 160-A a portion that includes the
page of the source code file that the developer is currently
viewing, a page immediately prior to the page that the
developer is currently viewing and a page immediately
following the page that the developer is currently viewing.
Supposing, for example, that a first developer employing
user device 160-A is currently viewing the second page of
document 400, viewport 282-A of user device 160-A accord-
ingly stores data corresponding to page 1, page 2, and page
3 of document 400, as shown in FIG. 5A.

Collaborative development service 130 may similarly
monitor the activities of the developer employing user
device 160-B and from time to time transmit to user device
160-B a portion of source code file 400 including the page
that the developer is currently viewing, the two pages
preceding the current page, and the two pages immediately
following the current page. Supposing, for example, that a
second developer employing user device 160-B is currently
viewing the fourth page of source code file 400, viewport
282-B accordingly stores data corresponding to page 2, page
3, page 4, page 5, and page 6 of source code file 400, a
shown in FIG. 5B.

Suppose now that the first developer makes a change 544
to the second page and that, substantially simultaneously, the
second developer makes a change 555 to the fourth page of
the source code file. In accordance with another embodi-
ment, collaborative development service 130 transmits a
transformed operation to a particular user device only if the
transformed operation pertains to the portion of a source
code file that is currently stored in the user device’s view-
port.

FIG. 6 is a flowchart of a method of providing collabora-
tive development services in accordance with an embodi-
ment. At step 610, access to a source code file stored at a
server is provided to a plurality of user devices, via a
network. In the illustrative embodiment, access to source
code file 400 is provided to the first developer employing
user device 160-A and to the second developer employing
user device 160-B. At step 620, respective changes to the
source code file are received from the plurality of user
devices. Change 544 is received from user device 160-A,
and change 555 is received from user device 160-B.

At step 630, one or more operational transformation rules
are applied to the respective changes, generating a plurality
of modifications applicable to the source code file. In the
illustrative embodiment, collaborative development service

US 9,483,259 Bl

9

130 receives change 544 made by the first user to the second
page of document 400, and change 555 made by the second
user to the fourth page of the document. Collaborative
development service 130 applies appropriate operational
transformation rules to the changes, and generates a first
transformed change, or modification, relevant to the second
page of source code file 400 and a second transformed
change, or modification, relevant to the fifth page of the
source code file.

At step 640, a plurality of modifications applicable to
respective portions of a source code file stored in respective
user devices, the respective portions being less than the
source code file, are determined. In the illustrative embodi-
ment, collaborative development service 130 determines
that the first transformed change is relevant to the second
page of source code file 400 and is therefore relevant both
to viewport 282-A of user device 160-A and also to viewport
282-B of user device 160-B. Collaborative development
service 130 determines that the second transformed change
is relevant to the fourth page of source code file 400, and is
therefore relevant to viewport 282-B of user device 160-B,
but is not relevant to viewport 282-A of user device 160-A.
In some embodiments, certain types of information related
to a transformed change may be transmitted to a particular
user device although the transformed change itself is not
relevant to the viewport of the user device.

At step 650, each of the modifications is transmitted only
to one or more user devices that store a portion of the source
code file corresponding to the respective modification. Col-
laborative development service 130 therefore transmits the
first transformed change both to user device 160-A and to
user device 160-B. Collaborative development service 130
transmits the second transformed change to user device
160-B, but does not transmit the second transformed change
to user device 160-A.

The methods and systems described herein advanta-
geously allow developers who use an online software devel-
opment service to collaboratively develop and edit software
code in real-time. Unlike existing methods and systems, the
methods and systems described herein transform changes
made by multiple developers and display the changes on
multiple devices in a consistent manner while avoiding
collisions. Furthermore, the changes are displayed on mul-
tiple devices in real-time, allowing each developer to view
not only his or her own changes to the document, but also
changes made by other developers, in real-time. In addition,
the use of viewports as described herein further facilitates
efficient real-time collaborative development.

State of Completion

In accordance with an embodiment, collaborative devel-
opment service 130 provides a state of completion service to
developers. While a developer inputs source code at the
developer’s user device, collaborative development service
130 continually monitors and analyzes the developer’s input
and from time to time provides one or more completion
options for completing the input. For example, if a developer
types a set of characters that are less than a full line of source
code, collaborative development service 130 may analyze
the developer’s input and offer one or more options for
completing the line. Similarly, if a developer types a set of
characters that are less than a full word, collaborative
development service 130 may analyze the developer’s input
and offer one or more options for completing the word.
Collaborative development service 130 analyzes a develop-
er’s input and identifies possible options for completion of
an input based on common patterns, logic (only options that
are logically possible are presented), etc.

10

15

20

25

30

35

40

45

50

55

60

10

Monitoring of Source Code Logic

In accordance with an embodiment, if a first developer
makes a first change to source code file 400 and a second
developer makes a second change to the source code file,
either developer may select a “synchronize” option to verify
that his or her change does not result in a logical conflict.
FIG. 7 shows a web page displaying source code file 400 that
may be displayed on a user device 160 in accordance with
an embodiment. If a developer employing user device 160
makes a change to source code file 400 and wishes to check
whether or not the change results in a logical conflict, the
developer may click a button on a computer mouse, for
example, causing a menu 722 that includes a synchronize
option 738 to appear. When the developer selects synchro-
nize option 738, collaborative development service 130
analyzes the source code in source code file 400 to determine
whether the developer’s change to the code results in any
logical conflicts. If a logical conflict is identified, a message
may be transmitted to the developer indicating that the
developer’s change results in a logical conflict. The message
may further specify a particular portion of the source code
file that conflicts with the developer’s change. The message
may further instruct the developer to resolve the conflict, by
further editing the source code, for example. In another
embodiment, a synchronize option may appear automati-
cally when any change is made to source code file 400.

In some embodiments, if multiple changes are made to a
source code file substantially simultaneously, the developer
who made the last change is required to select the synchro-
nize option to resolve any conflicts associated with the
change.

The synchronize functionality may be used in connection
with the branching and merging functionality which is
described below.

Undo

In accordance with an embodiment, a developer who has
made a change to a source code file may select an undo
option to reverse the change. For example, a developer may
select an undo option from a drop-down menu displayed on
display 270 of user device 160.

In one embodiment, each time user device 160 transmits
to collaborative development service 130 an instruction to
make a change to a source code file, user device 160 also
stores transiently in memory a reverse instruction in a stack
data structure. When the developer selects the undo option,
the most recent reverse instruction is retrieved from the
stack and applied to the visual representation of the source
code file on the developer’s particular user device. In this
manner, a developer may undo his or her own most recent
change without affecting changes made by other developers.
In another embodiment, a developer may selectively undo a
change that he or she made within a source code file (even
if the change is not the most recent change made by the
developer), without affecting any other change.

A redo option is also available to re-apply a change that
has been reversed by the selection of the undo option.

In another embodiment, a synchronize option (performed
using the synchronize option described above, for example)
may also be reversed using an undo option, in order to return
to a previous state.

Activity/Revision History

Versioned code storage 159 keeps track of revisions to
source code file 400 (and any branches thereof), and is
responsible for versioning. In accordance with an embodi-
ment, a developer viewing a source code file may view a list
of revisions made to the source code file (and any branches
thereof). Referring to FIG. 8, for example, a developer

US 9,483,259 Bl

11

viewing source code file 400 on a web page 885 may press
a button on a computer mouse to cause a menu 860 to
appear. In this example, menu 860 includes a revision
history option 867. When the developer selects revision
history option 867, versioned code storage 159 accesses an
activity table 428 (stored at versioned code storage 159 and
illustrated in FIG. 11C) and retrieves information relating to
revisions made to source code file 400 (and any branches
thereof). Activity table 428 is discussed below. User device
160 displays the source code file and the source code file’s
revision history on a page, such as web page 988 shown in
FIG. 9. A portion of source code file 400 is shown in a
left-hand portion of page 988. In a right-hand portion of the
page, the source code file’s revision history 916 is shown.
For example, the information from rows 451 and 452 of
activity table 428, pertaining to the activities of Developer
1 and Developer 2, respectively, are displayed.

In another embodiment, other techniques may be used to
navigate a source code file’s revision history.
Comments

In accordance with an embodiment, collaborative devel-
opment service 130 enables developers to maintain a com-
ment thread pertaining to a source code file, while the
developers are collaboratively editing the source code file.
Referring to FIG. 10, a web page 1075 may be displayed on
a user device 160. In this example, source code file 400 is
displayed in a left-hand portion of the page. A comment
thread 1050 is displayed in a right-hand portion of the page.
In the illustrative embodiment, comment thread 1050
includes a first comment 1031 generated by a first developer
and a second comment 1035 generated by a second devel-
oper. A developer may add a comment to the comment
thread by selecting an add button 1061 and composing a
comment. When a new comment is added, comment thread
1050 is updated. Comment thread 1050 is stored in memory
325, as shown in FIG. 3.

Cloud-Based Hosting Platform & Versioned Code Storage

In accordance with an embodiment, cloud-based hosting
platform 155 allows developers to compile, execute, and
perform other functions with respect to a source code file
upon request, substantially in real-time. FIG. 11A shows
components of cloud-based hosting platform 155 in accor-
dance with an embodiment. Cloud-based hosting platform
155 comprises a controller 1108, a compiler service 1110, an
interpreter service 1130, a conflict check service 1142, a
code analysis service 1144, a test service 1146, and a
merging service 1148. Cloud-based hosting platform 155
may include other components not shown in FIG. 11A.
Cloud-based hosting platform 155 is connected to network
105.

Any of the various services residing at cloud-based host-
ing platform 155 may receive a request to provide services
with respect to a particular source code file, and in response,
provide the requested service. For example, interpreter ser-
vice 1130 may receive a request to execute a particular
source code file and, in response, execute the particular
source code file.

FIG. 11B shows components of versioned code storage
159 in accordance with an embodiment. Versioned code
storage 159 may be used to store source code files and other
data. Versioned code storage 159 may comprise one or more
storage devices, including, without limitation, disk drives,
optical disks, tape drives, etc. Versioned code storage 159 is
connected to network 105.

In accordance with an embodiment, a current, up-to-date
version of source code file 400 is maintained at versioned
code storage 159, in addition to the version of source code

20

35

40

45

50

12

file 400 maintained by collaborative development service
130. For example, when source code file 400 is created,
collaborative development service 130 transmits a copy of
the file to versioned code storage 159. The copy of source
code file 400 is stored in versioned code storage 159, as
shown in FIG. 11B. Subsequently, collaborative develop-
ment service 130 from time to time transmits an updated
version of source code file 400 to versioned code storage
159, where it is stored. Alternatively, collaborative devel-
opment service 130 may from time to time transmit to
versioned code storage 159 data indicating changes made to
source code file 400.

In accordance with an embodiment, one or more devel-
opers may collaboratively edit a source code file and execute
the source code substantially immediately after making the
edits. Advantageously, a plurality of developers may repeat-
edly make edits to a source code file and, after each edit,
quickly execute the source code file, for example. Because
an updated version of the source code is maintained at
versioned code storage 159, developers may execute the
source code repeatedly and substantially in real-time.

In accordance with the illustrative embodiment of FIG.
11B, versioned code storage 159 also comprises an activity
table 428. Versioned code storage 159 uses activity table 428
to maintain a record of all activities and revisions related to
source code file 400, and any branches thereof, and enables
developers to view activity and/or revision history pertain-
ing to the particular source code file and any branches
thereof. FIG. 11C shows activity table 428 that is associated
with source code file 400 in accordance with an embodi-
ment. Activity table 428 includes a column 434, which
stores an activity identifier that identifies an activity per-
formed by a developer, such as accessing or leaving a source
code file, or making a revision to the source code file. For
example, an activity identifier may include, without limita-
tion, a data and time when the activity was performed, a
counter, etc. Activity table 428 includes a column 436
identifying the developer who performed the activity. Col-
umn 438 describes the activity performed by the developer,
such as entering or leaving a source code file (or a branch),
or making a change to the source code file. If a developer
makes a change to a source code file, the location and nature
of the change may be specified in column 438. In the
illustrative embodiment, activities are identified by date and
time. For example, row 451 indicates that Developer 1
performed a first activity, Activity 1, at MM/DD/YYYY at
12:01:01. Row 452 contains data related to a second activity
performed by Developer 2 at MM/DD/YYYY at 12:03:05.
In this example, activity table 428 is stored in memory 325,
as shown in FIG. 3. Activity table 428 may include other
types of columns, and other types of information relating to
a source code file, that are not shown in FIG. 11C.

FIG. 12 is a flowchart of a method of providing software
development services in accordance with an embodiment. At
step 1205, access to a source code file stored at a server is
provided to a plurality of user devices, via a network. As
discussed above, access to source code file 400 may be
provided to a user employing user device 160-A and simul-
taneously to a user employing user device 160-B. A first
change to source code file 400 is received from user device
160-A, and a second change to source code file 400 is
received from user device 160-B. One or more operational
transformation rules are applied to the first and second
changes to generate a first transformed change and a second
transformed change.

At step 1210, a source code file is updated based on a
plurality of changes received from respective user devices,

US 9,483,259 Bl

13

substantially in real-time. In the illustrative embodiment
discussed above, when the first transformed change and the
second transformed change are determined, collaborative
development service 130 transmits data indicating the first
transformed change and the second transformed change to
versioned code storage 159. Alternatively, the entire updated
source code file may be transmitted. Versioned code storage
159 updates source code file 400 based on the first and
second transformed changes.

In accordance with an embodiment, developers may
execute the source code upon request. For example, a
developer may request execution of a source code file by
selecting an option displayed on a user device. In an
exemplary embodiment shown in FIG. 13, an option to
execute a source code file may be presented to a user as a
menu option. In this example, a developer accesses source
code file 400 via a web page 1305, and causes a menu 1350
to be displayed, by clicking a button on a computer mouse,
for example. Menu 1350 includes an execute option 1361.
When the developer selects execute option 1361, user device
160 transmits the developer’s selection to collaborative
development service 130.

At step 1220, a selection of an option to execute the
source code file is received. Collaborative development
service 130 receives the developer’s selection and forwards
the selection to cloud-based hosting platform 155. Cloud-
based hosting platform 155 receives the selection. At step
1230, the source code file is executed substantially in
real-time, in response to the selection. In response to the
user’s selection of execute option 1361, cloud-based hosting
platform 155 causes interpreter 1130 to execute source code
file 400. In response, interpreter 1130 accesses the version of
source code file 400 maintained at versioned code storage
159, and executes the source code file.

In another embodiment, an interpreter application similar
to interpreter 1130 may reside and execute at collaborative
development service 130 as well as at cloud-based hosting
platform 155. In this embodiment, when collaborative devel-
opment service 130 receives a developer’s selection of
execute option 1361, collaborative development service 130
causes the interpreter application residing at collaborative
development service 130 to execute the source code file.

In accordance with an embodiment, results of the execu-
tion of the source code file may be displayed on user device
160, as shown in FIG. 14. Web page 1405 displays source
code file 400 and a results box 1420. In this example, results
box 1420 indicates that source code file 400 was executed
and displays the results (“OK”).

In accordance with an embodiment, one or more devel-
opers may collaboratively edit a source code file and invoke
another selected service that performs a selected activity
with respect to the source code file. Because an updated
version of the source code file is stored at versioned code
storage 159, the selected service is performed quickly and
substantially in real-time after the selection to invoke the
service is made.

For example, in an embodiment, cloud-based hosting
platform 155 may receive a request to compile a particular
source code file. In response, processor 1108 causes com-
piler service 1110 to compile the source code file. The
compiled code may be stored in versioned code storage 159.

In another embodiment, after compiling source code file
400, one or more developers may invoke test service 1146
to test the compiled code using test data or selected test
conditions to observe the results.

In another embodiment, one or more developers may
invoke code analysis service 1144 to examine a source code

10

15

20

25

30

35

40

45

50

55

60

65

14

file and check the code against predetermined guidelines.
For example, code analysis service 1144 may be invoked for
the purpose of enforcing stylistic conventions or style rules
established by a client. Code analysis service 1144 may also
identify suspect code that may be an error.

Review Capability

In accordance with an embodiment, a first developer may
submit one or more source code files for review by a second
developer. In another embodiment, a developer may submit
for review a branch that includes a plurality of files. For
example, when a source code file, or a branch (which may
include one file or multiple files) is generated, a list speci-
fying a senior developer responsible for the source code file
and one or more junior developers who will collaborate in
writing the source code, may be generated and stored in
associated with the source code file. Subsequently, when a
junior developer wishes to submit the source code file for
review by the senior developer, the junior developer may do
so by selecting a review option. FIG. 15 shows a web page
1535 displaying source code file 400 that may be displayed
on user device 160 in accordance with an embodiment. A
junior developer may cause a menu 1537 to appear, by
clicking a button on a computer mouse, for example, and
select a “submit for review” option 1580. User device 160
transmits the selection to collaborative development service
130; in response, collaborative development service 130
transmits a message to the senior developer indicating that
the junior developer has requested that the senior developer
review the source code file. For example, an email message
containing a Uniform Resource Locator (URL) associated
with the source code file may be sent to the senior developer.

The senior developer may then access the source code file,
by clicking on the URL, for example, and review the source
code. The senior developer may also execute the source code
file by selecting an execute option similar to that shown in
FIG. 13. When the senior developer chooses to execute the
source code file, interpreter 1130 executes the source code
file in the manner described above, and provides the results
to the senior developer.

Branching Function

In accordance with an embodiment, a plurality of devel-
opers may generate respective copies, or “branches,” of a
source code file, edit their respective branches, and subse-
quently merge the various branches to generate a merged
source code file. A single developer may create a branch and
subsequently merge the branch with the original source code
file. Alternatively, multiple developers may generate a plu-
rality of branches and subsequently merge the various
branches with the original source code file. As used herein,
the term “branch” may refer to a single file derived from a
source code file that includes a single file; or a branch may
refer to a plurality of files derived from a source code file
that includes a plurality of files.

Suppose, for example, that a first developer employing
user device 160-A accesses source code file 400 and wishes
to create a first “branch” of the source code file. While
viewing source code file 400, the first developer may click
on an appropriate button on a computer mouse, for example,
to cause a menu 1650 to appear, as shown in FIG. 16A.
Menu 1650 includes a “create branch” option 1661. When
the first developer selects create branch option 1661, col-
laborative development service 130 generates a first copy of
source code file 400 in response to the selection. Collabora-
tive development service 130 stores the copy in memory 325
as branch-1 (1171), as shown in FIG. 3, and transmits a copy
of branch 1 (1171) to versioned code storage 159, where it

US 9,483,259 Bl

15
is stored, as shown in FIG. 11B. The first developer then
makes several changes to branch-1 (1171).

In this discussion, source code file 400, from which
branch-1 (1171) is derived, is sometimes referred to as the
“trunk source code”.

Now suppose that a second developer employing user
device 160-B accesses source code file 400 and creates a
second branch of the source code file, in a similar manner.
Collaborative development service 130 generates a second
copy of source code file 400, and stores the copy in memory
325 as branch-2 (1172), as shown in FIG. 3. Collaborative
development service 130 also instructs versioned code stor-
age 159 to create a second branch. Versioned code storage
159 therefore creates branch-2 (1172). Branch-2 (1172) is
stored, as shown in FIG. 11B. The second developer then
makes several changes to branch-2 (1172).

In accordance with an embodiment, a branch derived from
a trunk source code file is maintained by storing only
changes that are made relative to the trunk source code file.

In one embodiment, after one or more developers access
a source code file and create two or more branches of the
source code file, the developers may invoke conflict check
service 1142 to check for conflicts between a branch and the
trunk source code file and/or among the branches. In
response, conflict check service 1142 accesses the respective
branches of source code file and identifies conflicts between
a branch and the trunk source code file and/or conflicts
among the branches. If a conflict is found, conflict check
service 1142 may notify the developers who created the
respective branches.

As used herein, a “conflict” is a discrepancy that prevents
a change in one branch from being merged automatically
into another branch, or into the trunk source file.

In one embodiment, conflict check service 1142 may
execute as a background routine while a developer edits a
respective branch of a source code file. For example, in one
embodiment, if conflict check service 1142 identifies a
change in a first branch (such as branch-1 (1171)) made by
a first developer that conflicts with the source code in the
“trunk” source code file (source code file 400), conflict
check service 1142 transmits a notification to the developer
informing the developer of the potential conflict. For
example, conflict check service 1142 may send a message
indicating that if the developer merges the developer’s
branch with the trunk source code, there will be a conflict.
In another embodiment, if conflict check service 1142 iden-
tifies a change in a first branch (e.g., branch-1 (1171)) made
by a first developer that conflicts with the source code in a
second developer’s branch (e.g., branch-2 (1172)), conflict
check service 1142 informs the first developer and also
transmits a notification to the second developer informing
the second developer of the conflict.

In another embodiment, conflict check service 1142 moni-
tors the activities of various developers and determines a
favorable time to merge a branch with the trunk source code
file. For example, while a first developer is editing a branch
derived from a trunk source code file, conflict check service
1142 may detect that a second developer has begun to make
changes to the trunk source code file. As a result, conflict
check service 1142 may inform the first developer that the
first developer should merge the branch with the trunk
source code file. In one embodiment, conflict check service
1142 notifies a developer of potential conflicts only when
conflict check service 1142 notifies the developer that the
developer should merge his or her branch with the trunk
source code file.

10

15

20

25

30

35

40

45

50

55

60

65

16

Now suppose that the first and second developers wish to
merge their respective branches to generate a merged ver-
sion of the source code file. In accordance with an embodi-
ment, the first and/or second developer may select a merge
option to reconcile and merge the first and second branches.
While viewing branch-1 (1171), the first developer may
click on an appropriate button on a computer mouse, for
example, to cause a menu 1680 to appear, as shown in FIG.
16B. Menu 1680 includes a “merge branch” option 1683.
When the first developer selects merge branch option 1683,
user device 160-A transmits the selection to collaborative
development service 130, which forward the selection to
cloud-based hosting platform 155. Referring to FIG. 11A,
merging service 1148 is invoked in response to the devel-
oper’s selection.

In one embodiment illustrated in FIG. 16C, a menu 1693
including a reconcile option 1692 may be displayed to the
first developer. Specifically, reconcile option 1692 asks
“Reconcile with which branch?” and provides a first option
1695 (Branch-2) and a second option 1696 (Branch-X). An
option to reconcile with the trunk source code file may also
be provided. In the illustrative embodiment, the first devel-
oper selects first option 1695 (Branch-2).

In response, merging service 1148 examines branch-1
(1171) and branch-2 (1172) and determines if there are any
conflicts between the two branches. Merging service 1148
may invoke conflict check service 1142 to perform this
function. If conflicts are identified, the developers are noti-
fied and may be required to resolve the conflicts, by further
editing one or more of the branches, for example. After
conflicts are resolved, merging service 1148 combines the
two branches to generate a unified source code file. In one
embodiment, changes to a branch that do not create a
conflict are incorporated into the unified source code file
without modification.

In another embodiment, a developer selects an option to
merge a branch with the trunk source code file. In response,
merging service 1148 examines the branch, determines
whether any conflicts exist between the branch and the trunk
source code file, and merges the branch file with the trunk
source code file.

In one embodiment, source code files, branches, and other
data may be multi-homed. For example, source code files,
branches, and other data may be replicated across multiple
data centers.

FIG. 16D is a flowchart of a method of providing collab-
orative software development services in accordance with an
embodiment. At step 1611, access to a source code file stored
at a server is provided to a device, the access being provided
via an Internet. For example, collaborative development
service 130 may enable one or more users to access the
version of source code file 400 stored in versioned code
storage 159. In another embodiment, cloud-based hosting
platform 155 provides access to a source code file stored in
versioned code storage 159. At step 1613, in response to a
request from the device, a branch is generated based on the
source code file. In the manner described above, the user
may request that a branch of source code file 400 be
generated. In response, collaborative development service
130 may cause branch (such as branch 1171) to be generated
and stored in versioned code storage 159. In another
embodiment, cloud-based hosting platform 155 may cause a
branch to be generated in response to the request. At step
1615, the branch is updated based on a change received from
the device, generating an updated branch. The user may edit
branch 1171, and an updated branch file is generated based
on the user’s change(s), and is stored in versioned code

US 9,483,259 Bl

17

storage 159. At step 1617, a conflict is detected between the
updated branch and the source code file. For example,
conflict check service 1142 may examine branch 1171 and
source code file 400 and identify a conflict. At step 1619, a
user of the device is notified of the conflict. Conflict check
service 1142 informs the user of the conflict, in the manner
described above.

In another embodiment, a user generates and edits a
branch based on a source code file, in the manner described
above, and requests that a second user review the branch. A
review request is transmitted to the second user, in the
manner described above. The second user reviews the
branch in response to the review request, and submits a
request to execute the branch. In response to the request
from the second user to execute the branch, the branch is
executed. After the branch is reviewed, the branch may be
merged with the source code file.

In various embodiments, the method steps described
herein, including the method steps described in FIG. 6
and/or FIG. 12, may be performed in an order different from
the particular order described or shown. In other embodi-
ments, other steps may be provided, or steps may be
eliminated, from the described methods.

Systems, apparatus, and methods described herein may be
implemented using digital circuitry, or using one or more
computers using well-known computer processors, memory
units, storage devices, computer software, and other com-
ponents. Typically, a computer includes a processor for
executing instructions and one or more memories for storing
instructions and data. A computer may also include, or be
coupled to, one or more mass storage devices, such as one
or more magnetic disks, internal hard disks and removable
disks, magneto-optical disks, optical disks, etc.

Systems, apparatus, and methods described herein may be
implemented using computers operating in a client-server
relationship. Typically, in such a system, the client comput-
ers are located remotely from the server computer and
interact via a network. The client-server relationship may be
defined and controlled by computer programs running on the
respective client and server computers.

Systems, apparatus, and methods described herein may be
used within a network-based cloud computing system. In
such a network-based cloud computing system, a server or
another processor that is connected to a network communi-
cates with one or more client computers via a network. A
client computer may communicate with the server via a
network browser application residing and operating on the
client computer, for example. A client computer may store
data on the server and access the data via the network. A
client computer may transmit requests for data, or requests
for online services, to the server via the network. The server
may perform requested services and provide data to the
client computer(s). The server may also transmit data
adapted to cause a client computer to perform a specified
function, e.g., to perform a calculation, to display specified
data on a screen, etc. For example, the server may transmit
a request adapted to cause a client computer to perform one
or more of the method steps described herein, including one
or more of the steps of FIG. 6 and/or FIG. 12. Certain steps
of the methods described herein, including one or more of
the steps of FIG. 6 and/or FIG. 12, may be performed by a
server or by another processor in a network-based cloud-
computing system. Certain steps of the methods described
herein, including one or more of the steps of FIG. 6 and/or
FIG. 12, may be performed by a client computer in a
network-based cloud computing system. The steps of the
methods described herein, including one or more of the steps

25

30

40

45

18
of FIG. 6 and/or FIG. 12, may be performed by a server
and/or by a client computer in a network-based cloud
computing system, in any combination.

Systems, apparatus, and methods described herein may be
implemented using a computer program product tangibly
embodied in an information carrier, e.g., in a non-transitory
machine-readable storage device, for execution by a pro-
grammable processor; and the method steps described
herein, including one or more of the steps of FIG. 6 and/or
FIG. 12, may be implemented using one or more computer
programs that are executable by such a processor. A com-
puter program is a set of computer program instructions that
can be used, directly or indirectly, in a computer to perform
a certain activity or bring about a certain result. A computer
program can be written in any form of programming lan-
guage, including compiled or interpreted languages, and it
can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other
unit suitable for use in a computing environment.

A high-level block diagram of an exemplary computer
that may be used to implement systems, apparatus and
methods described herein is illustrated in FIG. 17. Computer
1700 includes a processor 1701 operatively coupled to a data
storage device 1702 and a memory 1703. Processor 1701
controls the overall operation of computer 1700 by execut-
ing computer program instructions that define such opera-
tions. The computer program instructions may be stored in
data storage device 1702, or other computer readable
medium, and loaded into memory 1703 when execution of
the computer program instructions is desired. Thus, the
method steps of FIG. 6 and/or FIG. 12 can be defined by the
computer program instructions stored in memory 1703 and/
or data storage device 1702 and controlled by the processor
1701 executing the computer program instructions. For
example, the computer program instructions can be imple-
mented as computer executable code programmed by one
skilled in the art to perform an algorithm defined by the
method steps of FIG. 6 and/or FIG. 12. Accordingly, by
executing the computer program instructions, the processor
1701 executes an algorithm defined by the method steps of
FIG. 6 and/or FIG. 12. Computer 1700 also includes one or
more network interfaces 1704 for communicating with other
devices via a network. Computer 1700 also includes one or
more input/output devices 1705 that enable user interaction
with computer 1700 (e.g., display, keyboard, mouse, speak-
ers, buttons, etc.).

Processor 1701 may include both general and special
purpose microprocessors, and may be the sole processor or
one of multiple processors of computer 1700. Processor
1701 may include one or more central processing units
(CPUs), for example. Processor 1701, data storage device
1702, and/or memory 1703 may include, be supplemented
by, or incorporated in, one or more application-specific
integrated circuits (ASICs) and/or one or more field pro-
grammable gate lists (FPGAs).

Data storage device 1702 and memory 1703 each include
a tangible non-transitory computer readable storage
medium. Data storage device 1702, and memory 1703, may
each include high-speed random access memory, such as
dynamic random access memory (DRAM), static random
access memory (SRAM), double data rate synchronous
dynamic random access memory (DDR RAM), or other
random access solid state memory devices, and may include
non-volatile memory, such as one or more magnetic disk
storage devices such as internal hard disks and removable
disks, magneto-optical disk storage devices, optical disk
storage devices, flash memory devices, semiconductor

US 9,483,259 Bl

19

memory devices, such as erasable programmable read-only
memory (EPROM), electrically erasable programmable
read-only memory (EEPROM), compact disc read-only
memory (CD-ROM), digital versatile disc read-only
memory (DVD-ROM) disks, or other non-volatile solid state
storage devices.

Input/output devices 1705 may include peripherals, such
as a printer, scanner, display screen, etc. For example,
input/output devices 1705 may include a display device such
as a cathode ray tube (CRT) or liquid crystal display (LCD)
monitor for displaying information to the user, a keyboard,
and a pointing device such as a mouse or a trackball by
which the user can provide input to computer 1700.

Any or all of the systems and apparatus discussed herein,
including collaborative development service 130, user
device 160, and components thereof, including web browser
210, display 270, operational transformation rules 333,
processor 375, and memory 325, may be implemented using
a computer such as computer 1700.

One skilled in the art will recognize that an implementa-
tion of an actual computer or computer system may have
other structures and may contain other components as well,
and that FIG. 16 is a high level representation of some of the
components of such a computer for illustrative purposes.

The foregoing Detailed Description is to be understood as
being in every respect illustrative and exemplary, but not
restrictive, and the scope of the invention disclosed herein is
not to be determined from the Detailed Description, but
rather from the claims as interpreted according to the full
breadth permitted by the patent laws. It is to be understood
that the embodiments shown and described herein are only
illustrative of the principles of the present invention and that
various modifications may be implemented by those skilled
in the art without departing from the scope and spirit of the
invention. Those skilled in the art could implement various
other feature combinations without departing from the scope
and spirit of the invention.

The invention claimed is:
1. A method of providing software development services,
the method comprising:
providing, by one or more processors, to a plurality of
user devices, access to a source code file via a network;
updating, by the one or more processors, the source code
file based on a plurality of changes received via the
network from one or more of the plurality user devices,
wherein updating the source code file comprises iden-
tifying a plurality of updates to the source code file;
determining, for each of the plurality of user devices, by
the one or more processors, a local portion of the source
code file stored by each respective user device, the local
portion being less than all of the source code file and
each respective user device storing only a local portion
of the source code file; and
for each update within the plurality of updates:
determining, by the one or more processors, whether
the update corresponds to any of the local portion of
the source code file stored by the plurality of user
devices;
transmitting, by the one or more processors, the update
to a respective user device when the respective
update corresponds to the local portion of the source
code file stored by the respective user device.
2. The method of claim 1, wherein: the source code file
comprises a plurality of files.

15

20

40

45

50

55

20

3. The method of claim 1, further comprising:

providing, to the plurality of user devices, substantially
simultaneous access to the source code file stored at a
server, via the network.

4. The method of claim 1, further comprising:

receiving, from one of the plurality of user devices, a

request to perform a service with respect to the source
code file; and

in response to the request, performing the service with

respect to the source code file, substantially in real-
time.

5. The method of claim 4, wherein the service comprises
one of a compiler service and a code analysis service.

6. The method of claim 1, further comprising:

modifying the source code file based on a change received

from a first user device, generating a modified source
code file;

receiving from the first user device, a second request that

a particular user review the modified source code file;
in response to the second request, transmitting a review
request to the particular user;

receiving from the particular user a second selection of an

option to execute the modified source code file; and
in response to the second selection, executing the modi-
fied source code file, substantially in real-time.

7. The method of claim 1, further comprising:

receiving, from a first user device, a request to generate a

branch of the source code file;

in response to the request, generating a branch of the

source code file;

modifying the branch based on a change received from

the first user device;

receiving, from the first user device, a second request that

a particular user review the branch;

in response to the second request, transmitting a review

request to the particular user;

receiving from the particular user a second selection of a

second option to execute the branch; and

in response to the second selection, executing the branch,

substantially in real-time.

8. The method of claim 1, wherein the source code file
comprises software code, the method further comprising:

allowing a plurality of users employing the plurality of

user devices to collaboratively edit the software code.

9. The method of claim 1, wherein the local portion
includes one or more portions of the source code file.

10. A non-transitory computer-readable medium having
stored thereon instructions which, when executed by one or
more processors, cause the one or more processors to
perform a method of providing software development ser-
vices, the method comprising:

providing, to a plurality of user devices, access to a source

code file via a network;

updating the source code file based on a plurality of

changes received via the network from one or more of
the plurality of user devices, wherein updating the
source code file includes identifying a plurality of
updates to the source code file;

determining for each of the plurality of user devices, a

local portion of the source code file stored by each
respective user device, the local portion being less than
all of the source code file and each respective user
device storing only a local portion of the source code
file; and

for each update within the plurality of updates;

US 9,483,259 Bl

21

determining whether the update corresponds to any of
the local portions of the source code file stored by the
plurality of user devices;

transmitting the update to a respective user device
when the respective update corresponds to the local
portion of the source code file stored by the respec-
tive user device.

11. The non-transitory computer readable medium of
claim 10, wherein:

the source code file comprises a plurality of files.

12. The non-transitory computer readable medium of
claim 10, further comprising program instructions defining
the step of:

providing, to a plurality of user devices, substantially

simultaneous access to the source code file stored at a
server, via the network.

13. The non-transitory computer readable medium of
claim 10, further comprising program instructions defining
the steps of:

receiving, from one of the plurality of user devices, a

request to perform a service with respect to the source
code file; and

in response to the request, performing the service with

respect to the source code file, substantially in real-
time.

14. The non-transitory computer readable medium of
claim 13, wherein the service comprises one of a compiler
service and a code analysis service.

15. The non-transitory computer readable medium of
claim 10, further comprising program instructions defining
the steps of:

modifying the source code file based on a change received

from a first user device, generating a modified source
code file;

receiving, from the first user device, a second request that

a particular user review the modified source code file;
in response to the second request, transmitting a review
request to the particular user;

receiving from the particular user a second selection of an

option to execute the modified source code file; and
in response to the second selection, executing the modi-
fied source code file, substantially in real-time.

16. The non-transitory computer readable medium of
claim 10, further comprising program instructions defining
the steps of:

10

15

20

25

30

35

40

22

receiving, from a first user device, a request to generate a

branch of the source code file;

in response to the request, generating a branch of the

source code file;

modifying the branch based on a change received from

the first user device;

receiving, from the first user device, a second request that

a particular user review the branch;

in response to the second request, transmitting a review

request to the particular user;

receiving from the particular user a second selection of a

second option to execute the branch; and

in response to the second selection, executing the branch,

substantially in real-time.

17. The non-transitory computer readable medium of
claim 10, wherein the source code file comprises software
code, the non-transitory computer readable medium further
comprising program instructions defining the step of:

allowing a plurality of users employing the plurality of

user devices to collaboratively edit the software code.

18. The non-transitory computer readable medium of
claim 10, wherein the local portion includes one or more
portions of the source code file.

19. A method of providing software development ser-
vices, the method comprising:

providing, by one or more processors, to a plurality of

user devices, access to a source code file via a network;

updating, by the one or more processors, the source code
file based on a plurality of changes received from
respective user devices, said updating including,
applying one or more operational transformation rules
to the respective changes; and
generating a plurality of modifications applicable to the
source code file based on the applied operational
transform rules;
determining, by the one or more processors, for each of
the plurality of user devices, a subset of modifications
applicable to respective portions of the source code file
stored in each respective user devices, the respective
portions being less than the source code file; and

transmitting by the one or more processors, the deter-
mined subset of applicable modifications to only those
respective user devices that store the respective por-
tions.

